13.3. Filtering#
13.3.1. Logical Operators#
Operator |
What it does? |
---|---|
|
True if both conditions are true |
|
True if one of two conditions is true |
|
Negate a specified condition |
|
Allows for multiple OR conditions |
|
Negate multiple AND conditions |
|
True if a record exists |
|
True if there is a string match using % |
13.3.2. Relational Operators#
Assume a=1
and b=1
Relational Operators |
What it does? |
---|---|
= |
True if a has the same value as b |
<>, != |
True if a does not have the same value as b |
> |
True if a is greater than b |
< |
True if a is less than b |
>= |
True if a is greater than or equal to b |
<= |
True if a is less than or equal to b |
13.3.3. Conditional Evaluation#
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientGender = 'Male' AND PatientDateOfBirth < '1950-01-01'
ORDER BY PatientDateOfBirth
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientGender = 'Male' AND PatientDateOfBirth < '1950-01-01'
ORDER BY PatientDateOfBirth
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | PatientGender | PatientDateOfBirth | PatientRace | PatientMaritalStatus | PatientLanguage | PatientPopulationPercentageBelowPoverty | |
---|---|---|---|---|---|---|---|
0 | DDC0BC57-7A4E-4E02-9282-177750B74FBC | Male | 1921-03-26 14:38:51.803 | White | Single | English | 18.410000 |
1 | 53B9FFDD-F80B-43BE-93CF-C34A023EE7E9 | Male | 1921-08-22 19:17:09.227 | White | Divorced | Icelandic | 18.170000 |
2 | DA6CECFF-DE13-4C4C-919F-64E1A2B76C9D | Male | 1924-06-27 19:37:58.823 | Asian | Divorced | English | 83.750000 |
3 | 7C788499-7798-484B-A027-9FCDC4C0DADB | Male | 1926-08-13 10:22:16.247 | White | Married | English | 11.890000 |
4 | 25B786AF-0F99-478C-9CFA-0EA607E45834 | Male | 1926-08-20 00:21:38.870 | White | Married | English | 93.600000 |
5 | 4C201C71-CCED-40D1-9642-F9C8C485B854 | Male | 1926-09-22 09:17:14.713 | African American | Married | English | 10.300000 |
6 | A0A976C8-9B30-4492-B8C4-5B25095B9192 | Male | 1931-05-26 14:54:15.847 | Asian | Single | English | 19.520000 |
7 | 1A220558-5996-43E1-AE5D-7B96180FED35 | Male | 1937-09-07 22:23:53.143 | Asian | Married | English | 15.110000 |
8 | 21792512-2D40-4326-BEA2-A40127EB24FF | Male | 1938-03-24 19:25:53.980 | White | Single | Unknown | 89.440000 |
9 | C5D09468-574F-4802-B56F-DB38F4EB1687 | Male | 1939-07-07 19:39:49.753 | African American | Married | Icelandic | 10.870000 |
10 | FB909FAE-72DD-4F6F-9828-D92183DF185F | Male | 1940-07-15 12:18:41.080 | White | Single | Spanish | 14.900000 |
11 | FFCDECD6-4048-4DCB-B910-1218160005B3 | Male | 1941-05-06 14:56:42.687 | White | Single | English | 14.490000 |
12 | 9BBF3A51-443D-438B-9289-B98B8E0577C0 | Male | 1944-11-25 06:12:56.860 | White | Married | English | 16.760000 |
13 | E483DE6E-D4E6-47FD-905B-22EE86EC7ACE | Male | 1945-11-18 04:14:31.573 | African American | Single | English | 16.880000 |
14 | 967987B9-FFEF-4776-85CF-AE05CA81F583 | Male | 1947-02-13 10:26:55.520 | White | Widowed | English | 88.660000 |
15 | FB2ABB23-C9D0-4D09-8464-49BF0B982F0F | Male | 1947-12-28 02:45:40.547 | Unknown | Married | Icelandic | 18.080000 |
16 | 1A40AF35-C6D4-4D46-B475-A15D84E8A9D5 | Male | 1949-01-10 15:37:35.543 | White | Married | English | 11.250000 |
13.3.4. Using Parenthesis#
SELECT *
FROM PatientCorePopulatedTable
WHERE (PatientGender = 'Male' OR PatientRace = 'White') AND PatientDateOfBirth < '1950-01-01'
ORDER BY PatientDateOfBirth
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM PatientCorePopulatedTable
WHERE (PatientGender = 'Male' OR PatientRace = 'White') AND PatientDateOfBirth < '1950-01-01'
ORDER BY PatientDateOfBirth
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | PatientGender | PatientDateOfBirth | PatientRace | PatientMaritalStatus | PatientLanguage | PatientPopulationPercentageBelowPoverty | |
---|---|---|---|---|---|---|---|
0 | DDC0BC57-7A4E-4E02-9282-177750B74FBC | Male | 1921-03-26 14:38:51.803 | White | Single | English | 18.410000 |
1 | C8556CC0-32FC-4CA5-A8CD-9CCF38816167 | Female | 1921-04-11 11:39:49.197 | White | Married | English | 18.200000 |
2 | 53B9FFDD-F80B-43BE-93CF-C34A023EE7E9 | Male | 1921-08-22 19:17:09.227 | White | Divorced | Icelandic | 18.170000 |
3 | DA6CECFF-DE13-4C4C-919F-64E1A2B76C9D | Male | 1924-06-27 19:37:58.823 | Asian | Divorced | English | 83.750000 |
4 | 7C788499-7798-484B-A027-9FCDC4C0DADB | Male | 1926-08-13 10:22:16.247 | White | Married | English | 11.890000 |
5 | 25B786AF-0F99-478C-9CFA-0EA607E45834 | Male | 1926-08-20 00:21:38.870 | White | Married | English | 93.600000 |
6 | 4C201C71-CCED-40D1-9642-F9C8C485B854 | Male | 1926-09-22 09:17:14.713 | African American | Married | English | 10.300000 |
7 | 81C5B13B-F6B2-4E57-9593-6E7E4C13B2CE | Female | 1930-05-28 02:59:42.857 | White | Married | Icelandic | 19.220000 |
8 | A0A976C8-9B30-4492-B8C4-5B25095B9192 | Male | 1931-05-26 14:54:15.847 | Asian | Single | English | 19.520000 |
9 | FA157FA5-F488-4884-BF87-E144630D595C | Female | 1932-11-01 06:19:56.577 | White | Single | English | 16.320000 |
10 | B39DC5AC-E003-4E6A-91B6-FC07625A1285 | Female | 1935-11-03 21:07:09.040 | White | Married | English | 15.310000 |
11 | 1A220558-5996-43E1-AE5D-7B96180FED35 | Male | 1937-09-07 22:23:53.143 | Asian | Married | English | 15.110000 |
12 | 80D356B4-F974-441F-A5F2-F95986D119A2 | Female | 1938-03-06 18:24:18.297 | White | Single | English | 18.880000 |
13 | 21792512-2D40-4326-BEA2-A40127EB24FF | Male | 1938-03-24 19:25:53.980 | White | Single | Unknown | 89.440000 |
14 | C5D09468-574F-4802-B56F-DB38F4EB1687 | Male | 1939-07-07 19:39:49.753 | African American | Married | Icelandic | 10.870000 |
15 | FB909FAE-72DD-4F6F-9828-D92183DF185F | Male | 1940-07-15 12:18:41.080 | White | Single | Spanish | 14.900000 |
16 | FFCDECD6-4048-4DCB-B910-1218160005B3 | Male | 1941-05-06 14:56:42.687 | White | Single | English | 14.490000 |
17 | 0E0EADE8-5592-4E0B-9F88-D7596E32EE08 | Female | 1942-07-13 21:15:37.517 | White | Married | Spanish | 18.800000 |
18 | 66154E24-D3EE-4311-89DB-6195278F9B3C | Female | 1944-08-26 13:03:24.297 | White | Divorced | English | 19.490000 |
19 | 9BBF3A51-443D-438B-9289-B98B8E0577C0 | Male | 1944-11-25 06:12:56.860 | White | Married | English | 16.760000 |
20 | E250799D-F6DE-4914-ADB4-B08A6E5029B9 | Female | 1945-08-04 19:03:00.757 | White | Single | Unknown | 12.860000 |
21 | E483DE6E-D4E6-47FD-905B-22EE86EC7ACE | Male | 1945-11-18 04:14:31.573 | African American | Single | English | 16.880000 |
22 | 967987B9-FFEF-4776-85CF-AE05CA81F583 | Male | 1947-02-13 10:26:55.520 | White | Widowed | English | 88.660000 |
23 | FB2ABB23-C9D0-4D09-8464-49BF0B982F0F | Male | 1947-12-28 02:45:40.547 | Unknown | Married | Icelandic | 18.080000 |
24 | 1A40AF35-C6D4-4D46-B475-A15D84E8A9D5 | Male | 1949-01-10 15:37:35.543 | White | Married | English | 11.250000 |
13.3.5. Using the NOT
Operator#
SELECT *
FROM PatientCorePopulatedTable
WHERE NOT (PatientGender = 'Male' OR PatientRace = 'White') AND PatientDateOfBirth < '1950-01-01'
ORDER BY PatientDateOfBirth
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM PatientCorePopulatedTable
WHERE NOT (PatientGender = 'Male' OR PatientRace = 'White') AND PatientDateOfBirth < '1950-01-01'
ORDER BY PatientDateOfBirth
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | PatientGender | PatientDateOfBirth | PatientRace | PatientMaritalStatus | PatientLanguage | PatientPopulationPercentageBelowPoverty | |
---|---|---|---|---|---|---|---|
0 | 0BC491C5-5A45-4067-BD11-A78BEA00D3BE | Female | 1921-04-18 01:56:01.807 | Unknown | Married | English | 18.050000 |
1 | EA9B67E2-15F0-450B-A8A6-14F6E4AE3D12 | Female | 1930-04-08 20:59:31.057 | Asian | Separated | Icelandic | 98.400000 |
2 | 2A5251B1-0945-47FA-A65C-7A6381562591 | Female | 1942-01-07 16:45:33.060 | Unknown | Married | Spanish | 18.050000 |
3 | CC9CDA72-B37A-4F8F-AFE4-B08F56A183BE | Female | 1942-04-14 14:01:01.130 | Asian | Married | Spanish | 14.150000 |
4 | 6623F5D6-D581-4268-9F9B-21612FBBF7B5 | Female | 1943-02-17 15:36:13.787 | Asian | Single | Spanish | 14.490000 |
5 | 98F593D2-8894-49BB-93B9-5A0E2CF85E2E | Female | 1944-07-15 19:04:11.487 | African American | Married | English | 9.100000 |
6 | 7A7332AD-88B1-4848-9356-E5260E477C59 | Female | 1944-12-01 06:30:01.543 | Unknown | Married | English | 19.460000 |
13.3.6. Inequality condition#
SELECT *
FROM PatientCorePopulatedTable
WHERE (PatientGender = 'Male' AND PatientRace <> 'White') AND PatientDateOfBirth < '1950-01-01'
ORDER BY PatientDateOfBirth
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM PatientCorePopulatedTable
WHERE (PatientGender = 'Male' AND PatientRace <> 'White') AND PatientDateOfBirth < '1950-01-01'
ORDER BY PatientDateOfBirth
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | PatientGender | PatientDateOfBirth | PatientRace | PatientMaritalStatus | PatientLanguage | PatientPopulationPercentageBelowPoverty | |
---|---|---|---|---|---|---|---|
0 | DA6CECFF-DE13-4C4C-919F-64E1A2B76C9D | Male | 1924-06-27 19:37:58.823 | Asian | Divorced | English | 83.750000 |
1 | 4C201C71-CCED-40D1-9642-F9C8C485B854 | Male | 1926-09-22 09:17:14.713 | African American | Married | English | 10.300000 |
2 | A0A976C8-9B30-4492-B8C4-5B25095B9192 | Male | 1931-05-26 14:54:15.847 | Asian | Single | English | 19.520000 |
3 | 1A220558-5996-43E1-AE5D-7B96180FED35 | Male | 1937-09-07 22:23:53.143 | Asian | Married | English | 15.110000 |
4 | C5D09468-574F-4802-B56F-DB38F4EB1687 | Male | 1939-07-07 19:39:49.753 | African American | Married | Icelandic | 10.870000 |
5 | E483DE6E-D4E6-47FD-905B-22EE86EC7ACE | Male | 1945-11-18 04:14:31.573 | African American | Single | English | 16.880000 |
6 | FB2ABB23-C9D0-4D09-8464-49BF0B982F0F | Male | 1947-12-28 02:45:40.547 | Unknown | Married | Icelandic | 18.080000 |
13.3.7. Range using BETWEEN
condition#
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientDateOfBirth BETWEEN '1920-01-01' AND '1965-01-01'
ORDER BY PatientDateOfBirth
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientDateOfBirth BETWEEN '1920-01-01' AND '1965-01-01'
ORDER BY PatientDateOfBirth
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | PatientGender | PatientDateOfBirth | PatientRace | PatientMaritalStatus | PatientLanguage | PatientPopulationPercentageBelowPoverty | |
---|---|---|---|---|---|---|---|
0 | DDC0BC57-7A4E-4E02-9282-177750B74FBC | Male | 1921-03-26 14:38:51.803 | White | Single | English | 18.410000 |
1 | C8556CC0-32FC-4CA5-A8CD-9CCF38816167 | Female | 1921-04-11 11:39:49.197 | White | Married | English | 18.200000 |
2 | 0BC491C5-5A45-4067-BD11-A78BEA00D3BE | Female | 1921-04-18 01:56:01.807 | Unknown | Married | English | 18.050000 |
3 | 53B9FFDD-F80B-43BE-93CF-C34A023EE7E9 | Male | 1921-08-22 19:17:09.227 | White | Divorced | Icelandic | 18.170000 |
4 | DA6CECFF-DE13-4C4C-919F-64E1A2B76C9D | Male | 1924-06-27 19:37:58.823 | Asian | Divorced | English | 83.750000 |
5 | 7C788499-7798-484B-A027-9FCDC4C0DADB | Male | 1926-08-13 10:22:16.247 | White | Married | English | 11.890000 |
6 | 25B786AF-0F99-478C-9CFA-0EA607E45834 | Male | 1926-08-20 00:21:38.870 | White | Married | English | 93.600000 |
7 | 4C201C71-CCED-40D1-9642-F9C8C485B854 | Male | 1926-09-22 09:17:14.713 | African American | Married | English | 10.300000 |
8 | EA9B67E2-15F0-450B-A8A6-14F6E4AE3D12 | Female | 1930-04-08 20:59:31.057 | Asian | Separated | Icelandic | 98.400000 |
9 | 81C5B13B-F6B2-4E57-9593-6E7E4C13B2CE | Female | 1930-05-28 02:59:42.857 | White | Married | Icelandic | 19.220000 |
10 | A0A976C8-9B30-4492-B8C4-5B25095B9192 | Male | 1931-05-26 14:54:15.847 | Asian | Single | English | 19.520000 |
11 | FA157FA5-F488-4884-BF87-E144630D595C | Female | 1932-11-01 06:19:56.577 | White | Single | English | 16.320000 |
12 | B39DC5AC-E003-4E6A-91B6-FC07625A1285 | Female | 1935-11-03 21:07:09.040 | White | Married | English | 15.310000 |
13 | 1A220558-5996-43E1-AE5D-7B96180FED35 | Male | 1937-09-07 22:23:53.143 | Asian | Married | English | 15.110000 |
14 | 80D356B4-F974-441F-A5F2-F95986D119A2 | Female | 1938-03-06 18:24:18.297 | White | Single | English | 18.880000 |
15 | 21792512-2D40-4326-BEA2-A40127EB24FF | Male | 1938-03-24 19:25:53.980 | White | Single | Unknown | 89.440000 |
16 | C5D09468-574F-4802-B56F-DB38F4EB1687 | Male | 1939-07-07 19:39:49.753 | African American | Married | Icelandic | 10.870000 |
17 | FB909FAE-72DD-4F6F-9828-D92183DF185F | Male | 1940-07-15 12:18:41.080 | White | Single | Spanish | 14.900000 |
18 | FFCDECD6-4048-4DCB-B910-1218160005B3 | Male | 1941-05-06 14:56:42.687 | White | Single | English | 14.490000 |
19 | 2A5251B1-0945-47FA-A65C-7A6381562591 | Female | 1942-01-07 16:45:33.060 | Unknown | Married | Spanish | 18.050000 |
20 | CC9CDA72-B37A-4F8F-AFE4-B08F56A183BE | Female | 1942-04-14 14:01:01.130 | Asian | Married | Spanish | 14.150000 |
21 | 0E0EADE8-5592-4E0B-9F88-D7596E32EE08 | Female | 1942-07-13 21:15:37.517 | White | Married | Spanish | 18.800000 |
22 | 6623F5D6-D581-4268-9F9B-21612FBBF7B5 | Female | 1943-02-17 15:36:13.787 | Asian | Single | Spanish | 14.490000 |
23 | 98F593D2-8894-49BB-93B9-5A0E2CF85E2E | Female | 1944-07-15 19:04:11.487 | African American | Married | English | 9.100000 |
24 | 66154E24-D3EE-4311-89DB-6195278F9B3C | Female | 1944-08-26 13:03:24.297 | White | Divorced | English | 19.490000 |
25 | 9BBF3A51-443D-438B-9289-B98B8E0577C0 | Male | 1944-11-25 06:12:56.860 | White | Married | English | 16.760000 |
26 | 7A7332AD-88B1-4848-9356-E5260E477C59 | Female | 1944-12-01 06:30:01.543 | Unknown | Married | English | 19.460000 |
27 | E250799D-F6DE-4914-ADB4-B08A6E5029B9 | Female | 1945-08-04 19:03:00.757 | White | Single | Unknown | 12.860000 |
28 | E483DE6E-D4E6-47FD-905B-22EE86EC7ACE | Male | 1945-11-18 04:14:31.573 | African American | Single | English | 16.880000 |
29 | 967987B9-FFEF-4776-85CF-AE05CA81F583 | Male | 1947-02-13 10:26:55.520 | White | Widowed | English | 88.660000 |
30 | FB2ABB23-C9D0-4D09-8464-49BF0B982F0F | Male | 1947-12-28 02:45:40.547 | Unknown | Married | Icelandic | 18.080000 |
31 | 1A40AF35-C6D4-4D46-B475-A15D84E8A9D5 | Male | 1949-01-10 15:37:35.543 | White | Married | English | 11.250000 |
32 | F0B53A2C-98CA-415D-B928-E3FD0E52B22A | Male | 1950-06-20 10:31:18.337 | African American | Married | English | 14.870000 |
33 | B2EB15FA-5431-4804-9309-4215BDC778C0 | Male | 1951-04-13 20:14:02.953 | White | Divorced | English | 19.410000 |
34 | D8B53AA2-7953-4477-9EA4-68400EBAAC5C | Male | 1951-06-11 20:11:10.003 | African American | Unknown | English | 16.890000 |
35 | 7A025E77-7832-4F53-B9A7-09A3F98AC17E | Female | 1951-07-12 08:23:45.520 | Asian | Single | English | 16.690000 |
36 | 64182B95-EB72-4E2B-BE77-8050B71498CE | Male | 1952-01-18 19:51:12.917 | African American | Separated | English | 13.030000 |
37 | 79A7BA2A-D35A-4CB8-A835-6BAA13B0058C | Female | 1952-05-03 02:30:21.563 | White | Single | Spanish | 16.240000 |
38 | 714823AF-C52C-414C-B53B-C43EACD194C3 | Male | 1952-05-08 23:51:50.127 | White | Married | English | 13.230000 |
39 | 8AF47463-8534-4203-B210-C2290F6CE689 | Female | 1952-06-27 17:29:04.187 | White | Divorced | English | 11.880000 |
40 | 9C75DF1F-9DA6-4C98-8F5B-E10BDC805ED0 | Female | 1952-07-19 13:35:56.833 | White | Divorced | English | 88.650000 |
41 | BC44CE19-9FC5-4AC9-A296-9EBC5E3D03AE | Female | 1953-06-04 03:16:17.843 | African American | Married | English | 15.040000 |
42 | 69B5D2A0-12FD-46EF-A5FF-B29C4BAFBE49 | Male | 1954-05-02 16:38:15.957 | White | Married | English | 18.650000 |
43 | 3B11D6B3-A36A-4B69-A437-C29BF425A941 | Female | 1954-05-18 10:19:19.110 | Asian | Separated | English | 10.800000 |
44 | 9E18822E-7D13-45C7-B50E-F95CFF92BC3E | Male | 1954-10-16 06:45:56.257 | Unknown | Single | English | 15.240000 |
45 | C65A4ADE-112E-49E4-B72A-0DED22C242ED | Male | 1955-04-07 18:55:17.077 | White | Married | English | 19.660000 |
46 | FE0B9B59-1927-45B7-8556-E079DC1DE30A | Male | 1955-08-23 01:01:22.260 | White | Divorced | English | 6.480000 |
47 | 7548B6CF-79D9-461D-A0C5-20B861406FAC | Male | 1956-11-13 14:08:00.253 | White | Married | Icelandic | 14.030000 |
48 | F00C64F8-2033-4640-80FE-F1F62CBE26A5 | Female | 1957-06-04 18:31:01.177 | African American | Single | English | 15.720000 |
49 | C60FE675-CA52-4C55-A233-F4B27E94987F | Male | 1957-10-30 23:26:15.303 | Asian | Married | Spanish | 12.800000 |
50 | 6A57AC0C-57F3-4C19-98A1-51135EFBC4FF | Female | 1958-07-07 16:00:19.383 | Unknown | Married | English | 94.060000 |
51 | A7142B71-A144-4D56-BD14-3E966B01DB37 | Male | 1960-03-28 13:40:52.270 | White | Divorced | Spanish | 19.520000 |
52 | 016A590E-D093-4667-A5DA-D68EA6987D93 | Male | 1960-12-06 06:37:05.640 | White | Unknown | English | 15.020000 |
53 | EEAFC0B3-B835-4D99-AB33-2F9428E54E5F | Female | 1961-01-08 15:19:15.490 | Asian | Unknown | English | 18.950000 |
54 | 6D5DCAC1-17FE-4D7C-923B-806EFBA3E6DF | Male | 1961-10-22 02:47:13.170 | Asian | Married | English | 13.900000 |
55 | 49DADA25-F2C2-42BB-8210-D78E6C7B0D48 | Male | 1962-04-08 10:18:26.263 | African American | Married | English | 19.500000 |
56 | 65A7FBE0-EA9F-49E9-9824-D8F3AD98DAC0 | Female | 1962-11-30 06:28:33.110 | White | Separated | Spanish | 17.980000 |
57 | B70E5A76-F2BC-41E4-B037-CD4D9ABA0967 | Male | 1962-12-15 01:59:01.737 | White | Single | Icelandic | 13.100000 |
58 | C242E3A4-E785-4DF1-A0E4-3B568DC88F2E | Male | 1963-02-23 21:46:28.840 | Asian | Single | Spanish | 7.590000 |
59 | CD2ADB1B-97F7-4EF6-BC5C-3E0EC562A06F | Female | 1963-04-16 08:54:08.647 | White | Single | Icelandic | 11.160000 |
60 | 2E26695A-EFB0-4C7F-9318-E3030B154E39 | Female | 1963-06-28 05:37:36.843 | Asian | Married | English | 14.200000 |
61 | 36775002-9EC3-4889-AD4F-80DC6855C8D8 | Female | 1963-07-16 22:16:48.477 | Asian | Single | Spanish | 15.560000 |
62 | 2EE42DEF-37CA-4694-827E-FA4EAF882BFC | Male | 1964-04-27 00:41:40.410 | White | Married | English | 18.910000 |
63 | C2CCB1AB-6633-4CB3-B4E8-157E6FB02376 | Female | 1964-05-07 10:20:37.740 | White | Single | Spanish | 15.980000 |
64 | 8D389A8C-A6D8-4447-9DDE-1A28AB4EC667 | Female | 1964-07-10 08:50:13.707 | Asian | Married | English | 4.340000 |
13.3.8. String Condition#
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientID BETWEEN '2A' AND '53'
ORDER BY PatientID
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientID BETWEEN '2A' AND '53'
ORDER BY PatientID
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | PatientGender | PatientDateOfBirth | PatientRace | PatientMaritalStatus | PatientLanguage | PatientPopulationPercentageBelowPoverty | |
---|---|---|---|---|---|---|---|
0 | 2A5251B1-0945-47FA-A65C-7A6381562591 | Female | 1942-01-07 16:45:33.060 | Unknown | Married | Spanish | 18.050000 |
1 | 2A8772FE-61DB-483E-B6BF-6C0A74BA9C2A | Female | 1966-10-14 15:31:48.427 | Asian | Single | English | 11.150000 |
2 | 2E26695A-EFB0-4C7F-9318-E3030B154E39 | Female | 1963-06-28 05:37:36.843 | Asian | Married | English | 14.200000 |
3 | 2EE42DEF-37CA-4694-827E-FA4EAF882BFC | Male | 1964-04-27 00:41:40.410 | White | Married | English | 18.910000 |
4 | 3231F930-2978-4F50-8234-755449851E7B | Male | 1979-05-26 04:58:10.627 | White | Single | English | 18.360000 |
5 | 35FE7491-1A1D-48CB-810C-8DC2599AB3DD | Male | 1969-11-02 06:34:34.527 | White | Married | English | 4.510000 |
6 | 36775002-9EC3-4889-AD4F-80DC6855C8D8 | Female | 1963-07-16 22:16:48.477 | Asian | Single | Spanish | 15.560000 |
7 | 36E2F89E-777A-4D77-9D95-0D70A8AB416F | Male | 1980-05-30 13:23:50.703 | African American | Separated | English | 19.360000 |
8 | 3B11D6B3-A36A-4B69-A437-C29BF425A941 | Female | 1954-05-18 10:19:19.110 | Asian | Separated | English | 10.800000 |
9 | 3E462A8F-7B90-43A1-A8B6-AD82CB5002C9 | Female | 1986-12-20 16:41:34.793 | White | Married | Spanish | 18.330000 |
10 | 49DADA25-F2C2-42BB-8210-D78E6C7B0D48 | Male | 1962-04-08 10:18:26.263 | African American | Married | English | 19.500000 |
11 | 4C201C71-CCED-40D1-9642-F9C8C485B854 | Male | 1926-09-22 09:17:14.713 | African American | Married | English | 10.300000 |
13.3.9. Membership Condition#
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientRace = 'White' OR PatientRace = 'Asian'
ORDER BY PatientDateOfBirth
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientRace = 'White' OR PatientRace = 'Asian'
ORDER BY PatientDateOfBirth
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | PatientGender | PatientDateOfBirth | PatientRace | PatientMaritalStatus | PatientLanguage | PatientPopulationPercentageBelowPoverty | |
---|---|---|---|---|---|---|---|
0 | DDC0BC57-7A4E-4E02-9282-177750B74FBC | Male | 1921-03-26 14:38:51.803 | White | Single | English | 18.410000 |
1 | C8556CC0-32FC-4CA5-A8CD-9CCF38816167 | Female | 1921-04-11 11:39:49.197 | White | Married | English | 18.200000 |
2 | 53B9FFDD-F80B-43BE-93CF-C34A023EE7E9 | Male | 1921-08-22 19:17:09.227 | White | Divorced | Icelandic | 18.170000 |
3 | DA6CECFF-DE13-4C4C-919F-64E1A2B76C9D | Male | 1924-06-27 19:37:58.823 | Asian | Divorced | English | 83.750000 |
4 | 7C788499-7798-484B-A027-9FCDC4C0DADB | Male | 1926-08-13 10:22:16.247 | White | Married | English | 11.890000 |
5 | 25B786AF-0F99-478C-9CFA-0EA607E45834 | Male | 1926-08-20 00:21:38.870 | White | Married | English | 93.600000 |
6 | EA9B67E2-15F0-450B-A8A6-14F6E4AE3D12 | Female | 1930-04-08 20:59:31.057 | Asian | Separated | Icelandic | 98.400000 |
7 | 81C5B13B-F6B2-4E57-9593-6E7E4C13B2CE | Female | 1930-05-28 02:59:42.857 | White | Married | Icelandic | 19.220000 |
8 | A0A976C8-9B30-4492-B8C4-5B25095B9192 | Male | 1931-05-26 14:54:15.847 | Asian | Single | English | 19.520000 |
9 | FA157FA5-F488-4884-BF87-E144630D595C | Female | 1932-11-01 06:19:56.577 | White | Single | English | 16.320000 |
10 | B39DC5AC-E003-4E6A-91B6-FC07625A1285 | Female | 1935-11-03 21:07:09.040 | White | Married | English | 15.310000 |
11 | 1A220558-5996-43E1-AE5D-7B96180FED35 | Male | 1937-09-07 22:23:53.143 | Asian | Married | English | 15.110000 |
12 | 80D356B4-F974-441F-A5F2-F95986D119A2 | Female | 1938-03-06 18:24:18.297 | White | Single | English | 18.880000 |
13 | 21792512-2D40-4326-BEA2-A40127EB24FF | Male | 1938-03-24 19:25:53.980 | White | Single | Unknown | 89.440000 |
14 | FB909FAE-72DD-4F6F-9828-D92183DF185F | Male | 1940-07-15 12:18:41.080 | White | Single | Spanish | 14.900000 |
15 | FFCDECD6-4048-4DCB-B910-1218160005B3 | Male | 1941-05-06 14:56:42.687 | White | Single | English | 14.490000 |
16 | CC9CDA72-B37A-4F8F-AFE4-B08F56A183BE | Female | 1942-04-14 14:01:01.130 | Asian | Married | Spanish | 14.150000 |
17 | 0E0EADE8-5592-4E0B-9F88-D7596E32EE08 | Female | 1942-07-13 21:15:37.517 | White | Married | Spanish | 18.800000 |
18 | 6623F5D6-D581-4268-9F9B-21612FBBF7B5 | Female | 1943-02-17 15:36:13.787 | Asian | Single | Spanish | 14.490000 |
19 | 66154E24-D3EE-4311-89DB-6195278F9B3C | Female | 1944-08-26 13:03:24.297 | White | Divorced | English | 19.490000 |
20 | 9BBF3A51-443D-438B-9289-B98B8E0577C0 | Male | 1944-11-25 06:12:56.860 | White | Married | English | 16.760000 |
21 | E250799D-F6DE-4914-ADB4-B08A6E5029B9 | Female | 1945-08-04 19:03:00.757 | White | Single | Unknown | 12.860000 |
22 | 967987B9-FFEF-4776-85CF-AE05CA81F583 | Male | 1947-02-13 10:26:55.520 | White | Widowed | English | 88.660000 |
23 | 1A40AF35-C6D4-4D46-B475-A15D84E8A9D5 | Male | 1949-01-10 15:37:35.543 | White | Married | English | 11.250000 |
24 | B2EB15FA-5431-4804-9309-4215BDC778C0 | Male | 1951-04-13 20:14:02.953 | White | Divorced | English | 19.410000 |
25 | 7A025E77-7832-4F53-B9A7-09A3F98AC17E | Female | 1951-07-12 08:23:45.520 | Asian | Single | English | 16.690000 |
26 | 79A7BA2A-D35A-4CB8-A835-6BAA13B0058C | Female | 1952-05-03 02:30:21.563 | White | Single | Spanish | 16.240000 |
27 | 714823AF-C52C-414C-B53B-C43EACD194C3 | Male | 1952-05-08 23:51:50.127 | White | Married | English | 13.230000 |
28 | 8AF47463-8534-4203-B210-C2290F6CE689 | Female | 1952-06-27 17:29:04.187 | White | Divorced | English | 11.880000 |
29 | 9C75DF1F-9DA6-4C98-8F5B-E10BDC805ED0 | Female | 1952-07-19 13:35:56.833 | White | Divorced | English | 88.650000 |
30 | 69B5D2A0-12FD-46EF-A5FF-B29C4BAFBE49 | Male | 1954-05-02 16:38:15.957 | White | Married | English | 18.650000 |
31 | 3B11D6B3-A36A-4B69-A437-C29BF425A941 | Female | 1954-05-18 10:19:19.110 | Asian | Separated | English | 10.800000 |
32 | C65A4ADE-112E-49E4-B72A-0DED22C242ED | Male | 1955-04-07 18:55:17.077 | White | Married | English | 19.660000 |
33 | FE0B9B59-1927-45B7-8556-E079DC1DE30A | Male | 1955-08-23 01:01:22.260 | White | Divorced | English | 6.480000 |
34 | 7548B6CF-79D9-461D-A0C5-20B861406FAC | Male | 1956-11-13 14:08:00.253 | White | Married | Icelandic | 14.030000 |
35 | C60FE675-CA52-4C55-A233-F4B27E94987F | Male | 1957-10-30 23:26:15.303 | Asian | Married | Spanish | 12.800000 |
36 | A7142B71-A144-4D56-BD14-3E966B01DB37 | Male | 1960-03-28 13:40:52.270 | White | Divorced | Spanish | 19.520000 |
37 | 016A590E-D093-4667-A5DA-D68EA6987D93 | Male | 1960-12-06 06:37:05.640 | White | Unknown | English | 15.020000 |
38 | EEAFC0B3-B835-4D99-AB33-2F9428E54E5F | Female | 1961-01-08 15:19:15.490 | Asian | Unknown | English | 18.950000 |
39 | 6D5DCAC1-17FE-4D7C-923B-806EFBA3E6DF | Male | 1961-10-22 02:47:13.170 | Asian | Married | English | 13.900000 |
40 | 65A7FBE0-EA9F-49E9-9824-D8F3AD98DAC0 | Female | 1962-11-30 06:28:33.110 | White | Separated | Spanish | 17.980000 |
41 | B70E5A76-F2BC-41E4-B037-CD4D9ABA0967 | Male | 1962-12-15 01:59:01.737 | White | Single | Icelandic | 13.100000 |
42 | C242E3A4-E785-4DF1-A0E4-3B568DC88F2E | Male | 1963-02-23 21:46:28.840 | Asian | Single | Spanish | 7.590000 |
43 | CD2ADB1B-97F7-4EF6-BC5C-3E0EC562A06F | Female | 1963-04-16 08:54:08.647 | White | Single | Icelandic | 11.160000 |
44 | 2E26695A-EFB0-4C7F-9318-E3030B154E39 | Female | 1963-06-28 05:37:36.843 | Asian | Married | English | 14.200000 |
45 | 36775002-9EC3-4889-AD4F-80DC6855C8D8 | Female | 1963-07-16 22:16:48.477 | Asian | Single | Spanish | 15.560000 |
46 | 2EE42DEF-37CA-4694-827E-FA4EAF882BFC | Male | 1964-04-27 00:41:40.410 | White | Married | English | 18.910000 |
47 | C2CCB1AB-6633-4CB3-B4E8-157E6FB02376 | Female | 1964-05-07 10:20:37.740 | White | Single | Spanish | 15.980000 |
48 | 8D389A8C-A6D8-4447-9DDE-1A28AB4EC667 | Female | 1964-07-10 08:50:13.707 | Asian | Married | English | 4.340000 |
49 | 7FD13988-E58A-4A5C-8680-89AC200950FA | Male | 1965-07-12 15:41:20.523 | White | Married | Spanish | 12.410000 |
50 | 2A8772FE-61DB-483E-B6BF-6C0A74BA9C2A | Female | 1966-10-14 15:31:48.427 | Asian | Single | English | 11.150000 |
51 | 6985D824-3269-4D12-A9DD-B932D640E26E | Female | 1967-10-27 03:58:29.027 | White | Married | English | 12.010000 |
52 | DCE5AEB8-6DB9-4106-8AE4-02CCC5C23741 | Female | 1967-11-09 08:14:51.143 | White | Single | Unknown | 16.430000 |
53 | 03A481F5-B32A-4A91-BD42-43EB78FEBA77 | Female | 1968-02-07 23:02:38.017 | Asian | Single | Unknown | 93.230000 |
54 | 56A35E74-90BE-44A0-B7BA-7743BB152133 | Female | 1968-11-09 15:29:19.557 | White | Married | English | 8.810000 |
55 | 35FE7491-1A1D-48CB-810C-8DC2599AB3DD | Male | 1969-11-02 06:34:34.527 | White | Married | English | 4.510000 |
56 | DB22A4D9-7E4D-485C-916A-9CD1386507FB | Female | 1970-07-25 13:04:20.717 | Asian | Married | English | 6.670000 |
57 | 220C8D43-1322-4A9D-B890-D426942A3649 | Male | 1971-03-13 18:31:24.877 | Asian | Married | English | 16.710000 |
58 | B5D31F01-7273-4901-B56F-8139769A11EF | Female | 1971-04-02 18:56:59.353 | Asian | Unknown | Unknown | 82.080000 |
59 | 135C831F-7DA5-46C0-959C-EBCBD8810B43 | Male | 1971-05-13 04:40:05.623 | White | Unknown | Spanish | 12.380000 |
60 | 1A8791E3-A61C-455A-8DEE-763EB90C9B2C | Male | 1973-08-16 10:58:34.413 | Asian | Single | English | 13.970000 |
61 | 6D8008ED-D623-4BE4-B93B-335F9797C170 | Female | 1978-03-14 13:41:28.337 | White | Married | Icelandic | 14.810000 |
62 | B3892204-880B-40EF-B3BB-B824B50E99E5 | Male | 1978-08-06 08:38:27.330 | White | Single | Spanish | 16.860000 |
63 | 0681FA35-A794-4684-97BD-00B88370DB41 | Female | 1978-10-02 21:46:05.300 | Asian | Unknown | Spanish | 19.160000 |
64 | 6E70D84D-C75F-477C-BC37-9177C3698C66 | Male | 1979-01-04 05:45:29.580 | White | Married | English | 16.090000 |
65 | 3231F930-2978-4F50-8234-755449851E7B | Male | 1979-05-26 04:58:10.627 | White | Single | English | 18.360000 |
66 | E5478913-6819-4977-BB11-4C8B61175B56 | Female | 1980-03-21 13:08:56.867 | White | Single | English | 12.920000 |
67 | 0A9BA3E4-CF3C-49C4-9774-5EEA2EE7D123 | Male | 1980-04-04 07:59:15.820 | White | Single | Spanish | 14.280000 |
68 | 3E462A8F-7B90-43A1-A8B6-AD82CB5002C9 | Female | 1986-12-20 16:41:34.793 | White | Married | Spanish | 18.330000 |
69 | A50BE9B4-8A0B-4169-B894-F7BD86D7D90B | Female | 1987-04-18 16:31:16.333 | Asian | Divorced | English | 14.070000 |
70 | 1311FEE4-2FDC-46E4-83D3-1550A3E51D2C | Female | 1988-03-28 03:09:22.807 | White | Single | English | 14.990000 |
71 | 8856096E-E59C-4156-A767-C091AF799C80 | Female | 1988-11-25 02:59:36.373 | White | Divorced | English | 11.080000 |
13.3.9.1. IN
condition#
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientRace IN ('White', 'Asian')
ORDER BY PatientDateOfBirth
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientRace IN ('White', 'Asian')
ORDER BY PatientDateOfBirth
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | PatientGender | PatientDateOfBirth | PatientRace | PatientMaritalStatus | PatientLanguage | PatientPopulationPercentageBelowPoverty | |
---|---|---|---|---|---|---|---|
0 | DDC0BC57-7A4E-4E02-9282-177750B74FBC | Male | 1921-03-26 14:38:51.803 | White | Single | English | 18.410000 |
1 | C8556CC0-32FC-4CA5-A8CD-9CCF38816167 | Female | 1921-04-11 11:39:49.197 | White | Married | English | 18.200000 |
2 | 53B9FFDD-F80B-43BE-93CF-C34A023EE7E9 | Male | 1921-08-22 19:17:09.227 | White | Divorced | Icelandic | 18.170000 |
3 | DA6CECFF-DE13-4C4C-919F-64E1A2B76C9D | Male | 1924-06-27 19:37:58.823 | Asian | Divorced | English | 83.750000 |
4 | 7C788499-7798-484B-A027-9FCDC4C0DADB | Male | 1926-08-13 10:22:16.247 | White | Married | English | 11.890000 |
5 | 25B786AF-0F99-478C-9CFA-0EA607E45834 | Male | 1926-08-20 00:21:38.870 | White | Married | English | 93.600000 |
6 | EA9B67E2-15F0-450B-A8A6-14F6E4AE3D12 | Female | 1930-04-08 20:59:31.057 | Asian | Separated | Icelandic | 98.400000 |
7 | 81C5B13B-F6B2-4E57-9593-6E7E4C13B2CE | Female | 1930-05-28 02:59:42.857 | White | Married | Icelandic | 19.220000 |
8 | A0A976C8-9B30-4492-B8C4-5B25095B9192 | Male | 1931-05-26 14:54:15.847 | Asian | Single | English | 19.520000 |
9 | FA157FA5-F488-4884-BF87-E144630D595C | Female | 1932-11-01 06:19:56.577 | White | Single | English | 16.320000 |
10 | B39DC5AC-E003-4E6A-91B6-FC07625A1285 | Female | 1935-11-03 21:07:09.040 | White | Married | English | 15.310000 |
11 | 1A220558-5996-43E1-AE5D-7B96180FED35 | Male | 1937-09-07 22:23:53.143 | Asian | Married | English | 15.110000 |
12 | 80D356B4-F974-441F-A5F2-F95986D119A2 | Female | 1938-03-06 18:24:18.297 | White | Single | English | 18.880000 |
13 | 21792512-2D40-4326-BEA2-A40127EB24FF | Male | 1938-03-24 19:25:53.980 | White | Single | Unknown | 89.440000 |
14 | FB909FAE-72DD-4F6F-9828-D92183DF185F | Male | 1940-07-15 12:18:41.080 | White | Single | Spanish | 14.900000 |
15 | FFCDECD6-4048-4DCB-B910-1218160005B3 | Male | 1941-05-06 14:56:42.687 | White | Single | English | 14.490000 |
16 | CC9CDA72-B37A-4F8F-AFE4-B08F56A183BE | Female | 1942-04-14 14:01:01.130 | Asian | Married | Spanish | 14.150000 |
17 | 0E0EADE8-5592-4E0B-9F88-D7596E32EE08 | Female | 1942-07-13 21:15:37.517 | White | Married | Spanish | 18.800000 |
18 | 6623F5D6-D581-4268-9F9B-21612FBBF7B5 | Female | 1943-02-17 15:36:13.787 | Asian | Single | Spanish | 14.490000 |
19 | 66154E24-D3EE-4311-89DB-6195278F9B3C | Female | 1944-08-26 13:03:24.297 | White | Divorced | English | 19.490000 |
20 | 9BBF3A51-443D-438B-9289-B98B8E0577C0 | Male | 1944-11-25 06:12:56.860 | White | Married | English | 16.760000 |
21 | E250799D-F6DE-4914-ADB4-B08A6E5029B9 | Female | 1945-08-04 19:03:00.757 | White | Single | Unknown | 12.860000 |
22 | 967987B9-FFEF-4776-85CF-AE05CA81F583 | Male | 1947-02-13 10:26:55.520 | White | Widowed | English | 88.660000 |
23 | 1A40AF35-C6D4-4D46-B475-A15D84E8A9D5 | Male | 1949-01-10 15:37:35.543 | White | Married | English | 11.250000 |
24 | B2EB15FA-5431-4804-9309-4215BDC778C0 | Male | 1951-04-13 20:14:02.953 | White | Divorced | English | 19.410000 |
25 | 7A025E77-7832-4F53-B9A7-09A3F98AC17E | Female | 1951-07-12 08:23:45.520 | Asian | Single | English | 16.690000 |
26 | 79A7BA2A-D35A-4CB8-A835-6BAA13B0058C | Female | 1952-05-03 02:30:21.563 | White | Single | Spanish | 16.240000 |
27 | 714823AF-C52C-414C-B53B-C43EACD194C3 | Male | 1952-05-08 23:51:50.127 | White | Married | English | 13.230000 |
28 | 8AF47463-8534-4203-B210-C2290F6CE689 | Female | 1952-06-27 17:29:04.187 | White | Divorced | English | 11.880000 |
29 | 9C75DF1F-9DA6-4C98-8F5B-E10BDC805ED0 | Female | 1952-07-19 13:35:56.833 | White | Divorced | English | 88.650000 |
30 | 69B5D2A0-12FD-46EF-A5FF-B29C4BAFBE49 | Male | 1954-05-02 16:38:15.957 | White | Married | English | 18.650000 |
31 | 3B11D6B3-A36A-4B69-A437-C29BF425A941 | Female | 1954-05-18 10:19:19.110 | Asian | Separated | English | 10.800000 |
32 | C65A4ADE-112E-49E4-B72A-0DED22C242ED | Male | 1955-04-07 18:55:17.077 | White | Married | English | 19.660000 |
33 | FE0B9B59-1927-45B7-8556-E079DC1DE30A | Male | 1955-08-23 01:01:22.260 | White | Divorced | English | 6.480000 |
34 | 7548B6CF-79D9-461D-A0C5-20B861406FAC | Male | 1956-11-13 14:08:00.253 | White | Married | Icelandic | 14.030000 |
35 | C60FE675-CA52-4C55-A233-F4B27E94987F | Male | 1957-10-30 23:26:15.303 | Asian | Married | Spanish | 12.800000 |
36 | A7142B71-A144-4D56-BD14-3E966B01DB37 | Male | 1960-03-28 13:40:52.270 | White | Divorced | Spanish | 19.520000 |
37 | 016A590E-D093-4667-A5DA-D68EA6987D93 | Male | 1960-12-06 06:37:05.640 | White | Unknown | English | 15.020000 |
38 | EEAFC0B3-B835-4D99-AB33-2F9428E54E5F | Female | 1961-01-08 15:19:15.490 | Asian | Unknown | English | 18.950000 |
39 | 6D5DCAC1-17FE-4D7C-923B-806EFBA3E6DF | Male | 1961-10-22 02:47:13.170 | Asian | Married | English | 13.900000 |
40 | 65A7FBE0-EA9F-49E9-9824-D8F3AD98DAC0 | Female | 1962-11-30 06:28:33.110 | White | Separated | Spanish | 17.980000 |
41 | B70E5A76-F2BC-41E4-B037-CD4D9ABA0967 | Male | 1962-12-15 01:59:01.737 | White | Single | Icelandic | 13.100000 |
42 | C242E3A4-E785-4DF1-A0E4-3B568DC88F2E | Male | 1963-02-23 21:46:28.840 | Asian | Single | Spanish | 7.590000 |
43 | CD2ADB1B-97F7-4EF6-BC5C-3E0EC562A06F | Female | 1963-04-16 08:54:08.647 | White | Single | Icelandic | 11.160000 |
44 | 2E26695A-EFB0-4C7F-9318-E3030B154E39 | Female | 1963-06-28 05:37:36.843 | Asian | Married | English | 14.200000 |
45 | 36775002-9EC3-4889-AD4F-80DC6855C8D8 | Female | 1963-07-16 22:16:48.477 | Asian | Single | Spanish | 15.560000 |
46 | 2EE42DEF-37CA-4694-827E-FA4EAF882BFC | Male | 1964-04-27 00:41:40.410 | White | Married | English | 18.910000 |
47 | C2CCB1AB-6633-4CB3-B4E8-157E6FB02376 | Female | 1964-05-07 10:20:37.740 | White | Single | Spanish | 15.980000 |
48 | 8D389A8C-A6D8-4447-9DDE-1A28AB4EC667 | Female | 1964-07-10 08:50:13.707 | Asian | Married | English | 4.340000 |
49 | 7FD13988-E58A-4A5C-8680-89AC200950FA | Male | 1965-07-12 15:41:20.523 | White | Married | Spanish | 12.410000 |
50 | 2A8772FE-61DB-483E-B6BF-6C0A74BA9C2A | Female | 1966-10-14 15:31:48.427 | Asian | Single | English | 11.150000 |
51 | 6985D824-3269-4D12-A9DD-B932D640E26E | Female | 1967-10-27 03:58:29.027 | White | Married | English | 12.010000 |
52 | DCE5AEB8-6DB9-4106-8AE4-02CCC5C23741 | Female | 1967-11-09 08:14:51.143 | White | Single | Unknown | 16.430000 |
53 | 03A481F5-B32A-4A91-BD42-43EB78FEBA77 | Female | 1968-02-07 23:02:38.017 | Asian | Single | Unknown | 93.230000 |
54 | 56A35E74-90BE-44A0-B7BA-7743BB152133 | Female | 1968-11-09 15:29:19.557 | White | Married | English | 8.810000 |
55 | 35FE7491-1A1D-48CB-810C-8DC2599AB3DD | Male | 1969-11-02 06:34:34.527 | White | Married | English | 4.510000 |
56 | DB22A4D9-7E4D-485C-916A-9CD1386507FB | Female | 1970-07-25 13:04:20.717 | Asian | Married | English | 6.670000 |
57 | 220C8D43-1322-4A9D-B890-D426942A3649 | Male | 1971-03-13 18:31:24.877 | Asian | Married | English | 16.710000 |
58 | B5D31F01-7273-4901-B56F-8139769A11EF | Female | 1971-04-02 18:56:59.353 | Asian | Unknown | Unknown | 82.080000 |
59 | 135C831F-7DA5-46C0-959C-EBCBD8810B43 | Male | 1971-05-13 04:40:05.623 | White | Unknown | Spanish | 12.380000 |
60 | 1A8791E3-A61C-455A-8DEE-763EB90C9B2C | Male | 1973-08-16 10:58:34.413 | Asian | Single | English | 13.970000 |
61 | 6D8008ED-D623-4BE4-B93B-335F9797C170 | Female | 1978-03-14 13:41:28.337 | White | Married | Icelandic | 14.810000 |
62 | B3892204-880B-40EF-B3BB-B824B50E99E5 | Male | 1978-08-06 08:38:27.330 | White | Single | Spanish | 16.860000 |
63 | 0681FA35-A794-4684-97BD-00B88370DB41 | Female | 1978-10-02 21:46:05.300 | Asian | Unknown | Spanish | 19.160000 |
64 | 6E70D84D-C75F-477C-BC37-9177C3698C66 | Male | 1979-01-04 05:45:29.580 | White | Married | English | 16.090000 |
65 | 3231F930-2978-4F50-8234-755449851E7B | Male | 1979-05-26 04:58:10.627 | White | Single | English | 18.360000 |
66 | E5478913-6819-4977-BB11-4C8B61175B56 | Female | 1980-03-21 13:08:56.867 | White | Single | English | 12.920000 |
67 | 0A9BA3E4-CF3C-49C4-9774-5EEA2EE7D123 | Male | 1980-04-04 07:59:15.820 | White | Single | Spanish | 14.280000 |
68 | 3E462A8F-7B90-43A1-A8B6-AD82CB5002C9 | Female | 1986-12-20 16:41:34.793 | White | Married | Spanish | 18.330000 |
69 | A50BE9B4-8A0B-4169-B894-F7BD86D7D90B | Female | 1987-04-18 16:31:16.333 | Asian | Divorced | English | 14.070000 |
70 | 1311FEE4-2FDC-46E4-83D3-1550A3E51D2C | Female | 1988-03-28 03:09:22.807 | White | Single | English | 14.990000 |
71 | 8856096E-E59C-4156-A767-C091AF799C80 | Female | 1988-11-25 02:59:36.373 | White | Divorced | English | 11.080000 |
13.3.9.2. NOT IN
condition#
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientRace NOT IN ('White', 'Asian')
ORDER BY PatientDateOfBirth
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientRace NOT IN ('White', 'Asian')
ORDER BY PatientDateOfBirth
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | PatientGender | PatientDateOfBirth | PatientRace | PatientMaritalStatus | PatientLanguage | PatientPopulationPercentageBelowPoverty | |
---|---|---|---|---|---|---|---|
0 | 0BC491C5-5A45-4067-BD11-A78BEA00D3BE | Female | 1921-04-18 01:56:01.807 | Unknown | Married | English | 18.050000 |
1 | 4C201C71-CCED-40D1-9642-F9C8C485B854 | Male | 1926-09-22 09:17:14.713 | African American | Married | English | 10.300000 |
2 | C5D09468-574F-4802-B56F-DB38F4EB1687 | Male | 1939-07-07 19:39:49.753 | African American | Married | Icelandic | 10.870000 |
3 | 2A5251B1-0945-47FA-A65C-7A6381562591 | Female | 1942-01-07 16:45:33.060 | Unknown | Married | Spanish | 18.050000 |
4 | 98F593D2-8894-49BB-93B9-5A0E2CF85E2E | Female | 1944-07-15 19:04:11.487 | African American | Married | English | 9.100000 |
5 | 7A7332AD-88B1-4848-9356-E5260E477C59 | Female | 1944-12-01 06:30:01.543 | Unknown | Married | English | 19.460000 |
6 | E483DE6E-D4E6-47FD-905B-22EE86EC7ACE | Male | 1945-11-18 04:14:31.573 | African American | Single | English | 16.880000 |
7 | FB2ABB23-C9D0-4D09-8464-49BF0B982F0F | Male | 1947-12-28 02:45:40.547 | Unknown | Married | Icelandic | 18.080000 |
8 | F0B53A2C-98CA-415D-B928-E3FD0E52B22A | Male | 1950-06-20 10:31:18.337 | African American | Married | English | 14.870000 |
9 | D8B53AA2-7953-4477-9EA4-68400EBAAC5C | Male | 1951-06-11 20:11:10.003 | African American | Unknown | English | 16.890000 |
10 | 64182B95-EB72-4E2B-BE77-8050B71498CE | Male | 1952-01-18 19:51:12.917 | African American | Separated | English | 13.030000 |
11 | BC44CE19-9FC5-4AC9-A296-9EBC5E3D03AE | Female | 1953-06-04 03:16:17.843 | African American | Married | English | 15.040000 |
12 | 9E18822E-7D13-45C7-B50E-F95CFF92BC3E | Male | 1954-10-16 06:45:56.257 | Unknown | Single | English | 15.240000 |
13 | F00C64F8-2033-4640-80FE-F1F62CBE26A5 | Female | 1957-06-04 18:31:01.177 | African American | Single | English | 15.720000 |
14 | 6A57AC0C-57F3-4C19-98A1-51135EFBC4FF | Female | 1958-07-07 16:00:19.383 | Unknown | Married | English | 94.060000 |
15 | 49DADA25-F2C2-42BB-8210-D78E6C7B0D48 | Male | 1962-04-08 10:18:26.263 | African American | Married | English | 19.500000 |
16 | 80AC01B2-BD55-4BE0-A59A-4024104CF4E9 | Female | 1965-05-14 15:25:09.740 | African American | Married | English | 19.740000 |
17 | A19A0B00-4C9A-4206-B1FE-17E6DA3CEB0B | Female | 1967-07-01 01:44:24.907 | Unknown | Married | English | 17.840000 |
18 | EA7C2F0F-DA1C-4CE8-9700-4BB1FC7AF3FB | Male | 1969-01-05 00:15:09.627 | Unknown | Married | English | 3.300000 |
19 | 886B5885-1EE2-49F3-98D5-A2F02EB8A9D4 | Female | 1970-04-27 09:15:11.080 | Unknown | Married | English | 10.350000 |
20 | C54B5AAD-98E8-472D-BAA0-638D9F3BD024 | Female | 1972-11-13 22:50:43.600 | African American | Single | Unknown | 94.000000 |
21 | 69CC25ED-A54A-4BAF-97E3-774BB3C9DED1 | Female | 1974-10-13 14:51:28.997 | Unknown | Married | English | 17.720000 |
22 | DB92CDC6-FA9B-4492-BC2C-0C588AD78956 | Male | 1977-06-30 01:46:05.467 | Unknown | Single | Icelandic | 1.700000 |
23 | 868E700E-3C56-458F-A477-078D671DCB20 | Female | 1978-09-21 15:29:44.770 | African American | Married | Icelandic | 5.940000 |
24 | 36E2F89E-777A-4D77-9D95-0D70A8AB416F | Male | 1980-05-30 13:23:50.703 | African American | Separated | English | 19.360000 |
25 | 672D554B-D6D1-40B2-A6A4-21A4CB6B1AA6 | Male | 1983-06-17 04:46:13.753 | African American | Single | Icelandic | 11.040000 |
26 | CC12B481-B516-455B-884F-4CA900B29F2E | Female | 1985-10-21 07:59:04.777 | Unknown | Divorced | English | 14.580000 |
27 | B7E9FC4C-5182-4A34-954E-CEF5FC07E96D | Female | 1985-12-11 02:48:16.907 | Unknown | Single | English | 11.430000 |
13.3.9.3. Using subqueries#
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientID IN (SELECT PatientID FROM PatientCorePopulatedTable WHERE PatientDateOfBirth > '1980-01-01')
ORDER BY PatientDateOfBirth
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM PatientCorePopulatedTable
WHERE PatientID IN (SELECT PatientID FROM PatientCorePopulatedTable WHERE PatientDateOfBirth > '1980-01-01')
ORDER BY PatientDateOfBirth
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | PatientGender | PatientDateOfBirth | PatientRace | PatientMaritalStatus | PatientLanguage | PatientPopulationPercentageBelowPoverty | |
---|---|---|---|---|---|---|---|
0 | E5478913-6819-4977-BB11-4C8B61175B56 | Female | 1980-03-21 13:08:56.867 | White | Single | English | 12.920000 |
1 | 0A9BA3E4-CF3C-49C4-9774-5EEA2EE7D123 | Male | 1980-04-04 07:59:15.820 | White | Single | Spanish | 14.280000 |
2 | 36E2F89E-777A-4D77-9D95-0D70A8AB416F | Male | 1980-05-30 13:23:50.703 | African American | Separated | English | 19.360000 |
3 | 672D554B-D6D1-40B2-A6A4-21A4CB6B1AA6 | Male | 1983-06-17 04:46:13.753 | African American | Single | Icelandic | 11.040000 |
4 | CC12B481-B516-455B-884F-4CA900B29F2E | Female | 1985-10-21 07:59:04.777 | Unknown | Divorced | English | 14.580000 |
5 | B7E9FC4C-5182-4A34-954E-CEF5FC07E96D | Female | 1985-12-11 02:48:16.907 | Unknown | Single | English | 11.430000 |
6 | 3E462A8F-7B90-43A1-A8B6-AD82CB5002C9 | Female | 1986-12-20 16:41:34.793 | White | Married | Spanish | 18.330000 |
7 | A50BE9B4-8A0B-4169-B894-F7BD86D7D90B | Female | 1987-04-18 16:31:16.333 | Asian | Divorced | English | 14.070000 |
8 | 1311FEE4-2FDC-46E4-83D3-1550A3E51D2C | Female | 1988-03-28 03:09:22.807 | White | Single | English | 14.990000 |
9 | 8856096E-E59C-4156-A767-C091AF799C80 | Female | 1988-11-25 02:59:36.373 | White | Divorced | English | 11.080000 |
13.3.10. Using Wildcards#
SELECT *
FROM AdmissionsDiagnosesCorePopulatedTable
WHERE PrimaryDiagnosisCode LIKE 'M%'
ORDER BY PrimaryDiagnosisCode
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM AdmissionsDiagnosesCorePopulatedTable
WHERE PrimaryDiagnosisCode LIKE 'M%'
ORDER BY PrimaryDiagnosisCode
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | AdmissionID | PrimaryDiagnosisCode | PrimaryDiagnosisDescription | |
---|---|---|---|---|
0 | 80AC01B2-BD55-4BE0-A59A-4024104CF4E9 | 2 | M01.X | Direct infection of joint in infectious and parasitic diseases classified elsewhere |
1 | 4C201C71-CCED-40D1-9642-F9C8C485B854 | 5 | M01.X1 | Direct infection of shoulder joint in infectious and parasitic diseases classified elsewhere |
2 | 25B786AF-0F99-478C-9CFA-0EA607E45834 | 1 | M01.X5 | Direct infection of hip in infectious and parasitic diseases classified elsewhere |
3 | 21792512-2D40-4326-BEA2-A40127EB24FF | 4 | M01.X72 | Direct infection of left ankle and foot in infectious and parasitic diseases classified elsewhere |
4 | DA6CECFF-DE13-4C4C-919F-64E1A2B76C9D | 2 | M02.35 | Reiter's disease, hip |
5 | 25B786AF-0F99-478C-9CFA-0EA607E45834 | 7 | M02.352 | Reiter's disease, left hip |
6 | 6623F5D6-D581-4268-9F9B-21612FBBF7B5 | 4 | M02.352 | Reiter's disease, left hip |
7 | EA7C2F0F-DA1C-4CE8-9700-4BB1FC7AF3FB | 1 | M02.37 | Reiter's disease, ankle and foot |
8 | 0681FA35-A794-4684-97BD-00B88370DB41 | 2 | M02.38 | Reiter's disease, vertebrae |
9 | 2A8772FE-61DB-483E-B6BF-6C0A74BA9C2A | 2 | M05.13 | Rheumatoid lung disease with rheumatoid arthritis of wrist |
10 | A7142B71-A144-4D56-BD14-3E966B01DB37 | 3 | M05.132 | Rheumatoid lung disease with rheumatoid arthritis of left wrist |
11 | 135C831F-7DA5-46C0-959C-EBCBD8810B43 | 5 | M05.17 | Rheumatoid lung disease with rheumatoid arthritis of ankle and foot |
12 | 2A5251B1-0945-47FA-A65C-7A6381562591 | 3 | M05.23 | Rheumatoid vasculitis with rheumatoid arthritis of wrist |
13 | EEAFC0B3-B835-4D99-AB33-2F9428E54E5F | 1 | M05.25 | Rheumatoid vasculitis with rheumatoid arthritis of hip |
14 | E483DE6E-D4E6-47FD-905B-22EE86EC7ACE | 3 | M05.252 | Rheumatoid vasculitis with rheumatoid arthritis of left hip |
15 | 7548B6CF-79D9-461D-A0C5-20B861406FAC | 1 | M05.261 | Rheumatoid vasculitis with rheumatoid arthritis of right knee |
16 | C65A4ADE-112E-49E4-B72A-0DED22C242ED | 1 | M05.27 | Rheumatoid vasculitis with rheumatoid arthritis of ankle and foot |
17 | FB2ABB23-C9D0-4D09-8464-49BF0B982F0F | 1 | M05.272 | Rheumatoid vasculitis with rheumatoid arthritis of left ankle and foot |
18 | B39DC5AC-E003-4E6A-91B6-FC07625A1285 | 5 | M05.441 | Rheumatoid myopathy with rheumatoid arthritis of right hand |
19 | 7A025E77-7832-4F53-B9A7-09A3F98AC17E | 1 | M05.442 | Rheumatoid myopathy with rheumatoid arthritis of left hand |
20 | 0E0EADE8-5592-4E0B-9F88-D7596E32EE08 | 2 | M05.49 | Rheumatoid myopathy with rheumatoid arthritis of multiple sites |
21 | 69B5D2A0-12FD-46EF-A5FF-B29C4BAFBE49 | 2 | M05.5 | Rheumatoid polyneuropathy with rheumatoid arthritis |
22 | 80AC01B2-BD55-4BE0-A59A-4024104CF4E9 | 5 | M05.51 | Rheumatoid polyneuropathy with rheumatoid arthritis of shoulder |
23 | 7548B6CF-79D9-461D-A0C5-20B861406FAC | 3 | M05.511 | Rheumatoid polyneuropathy with rheumatoid arthritis of right shoulder |
24 | 80D356B4-F974-441F-A5F2-F95986D119A2 | 6 | M05.561 | Rheumatoid polyneuropathy with rheumatoid arthritis of right knee |
25 | EEAFC0B3-B835-4D99-AB33-2F9428E54E5F | 2 | M05.59 | Rheumatoid polyneuropathy with rheumatoid arthritis of multiple sites |
26 | B2EB15FA-5431-4804-9309-4215BDC778C0 | 1 | M05.722 | Rheumatoid arthritis with rheumatoid factor of left elbow without organ or systems involvement |
27 | FA157FA5-F488-4884-BF87-E144630D595C | 1 | M05.732 | Rheumatoid arthritis with rheumatoid factor of left wrist without organ or systems involvement |
28 | 35FE7491-1A1D-48CB-810C-8DC2599AB3DD | 3 | M05.741 | Rheumatoid arthritis with rheumatoid factor of right hand without organ or systems involvement |
29 | 967987B9-FFEF-4776-85CF-AE05CA81F583 | 1 | M05.742 | Rheumatoid arthritis with rheumatoid factor of left hand without organ or systems involvement |
30 | 25B786AF-0F99-478C-9CFA-0EA607E45834 | 4 | M05.75 | Rheumatoid arthritis with rheumatoid factor of hip without organ or systems involvement |
31 | 886B5885-1EE2-49F3-98D5-A2F02EB8A9D4 | 1 | M05.752 | Rheumatoid arthritis with rheumatoid factor of left hip without organ or systems involvement |
32 | B39DC5AC-E003-4E6A-91B6-FC07625A1285 | 1 | M06.041 | Rheumatoid arthritis without rheumatoid factor, right hand |
33 | E483DE6E-D4E6-47FD-905B-22EE86EC7ACE | 4 | M06.051 | Rheumatoid arthritis without rheumatoid factor, right hip |
34 | 98F593D2-8894-49BB-93B9-5A0E2CF85E2E | 5 | M06.2 | Rheumatoid bursitis |
35 | A19A0B00-4C9A-4206-B1FE-17E6DA3CEB0B | 3 | M06.222 | Rheumatoid bursitis, left elbow |
36 | 7FD13988-E58A-4A5C-8680-89AC200950FA | 3 | M06.25 | Rheumatoid bursitis, hip |
37 | E250799D-F6DE-4914-ADB4-B08A6E5029B9 | 1 | M06.31 | Rheumatoid nodule, shoulder |
38 | FA157FA5-F488-4884-BF87-E144630D595C | 2 | M06.34 | Rheumatoid nodule, hand |
39 | DB22A4D9-7E4D-485C-916A-9CD1386507FB | 1 | M06.361 | Rheumatoid nodule, right knee |
40 | C8556CC0-32FC-4CA5-A8CD-9CCF38816167 | 3 | M06.37 | Rheumatoid nodule, ankle and foot |
41 | 35FE7491-1A1D-48CB-810C-8DC2599AB3DD | 1 | M10.31 | Gout due to renal impairment, shoulder |
42 | 21792512-2D40-4326-BEA2-A40127EB24FF | 6 | M10.322 | Gout due to renal impairment, left elbow |
43 | CC12B481-B516-455B-884F-4CA900B29F2E | 1 | M10.361 | Gout due to renal impairment, right knee |
44 | 868E700E-3C56-458F-A477-078D671DCB20 | 1 | M10.37 | Gout due to renal impairment, ankle and foot |
45 | CD2ADB1B-97F7-4EF6-BC5C-3E0EC562A06F | 2 | M10.38 | Gout due to renal impairment, vertebrae |
46 | BC44CE19-9FC5-4AC9-A296-9EBC5E3D03AE | 3 | M11.05 | Hydroxyapatite deposition disease, hip |
47 | D8B53AA2-7953-4477-9EA4-68400EBAAC5C | 5 | M11.052 | Hydroxyapatite deposition disease, left hip |
48 | 79A7BA2A-D35A-4CB8-A835-6BAA13B0058C | 1 | M11.071 | Hydroxyapatite deposition disease, right ankle and foot |
49 | 81C5B13B-F6B2-4E57-9593-6E7E4C13B2CE | 2 | M11.072 | Hydroxyapatite deposition disease, left ankle and foot |
50 | 81C5B13B-F6B2-4E57-9593-6E7E4C13B2CE | 5 | M12.111 | Kaschin-Beck disease, right shoulder |
51 | 220C8D43-1322-4A9D-B890-D426942A3649 | 4 | M12.161 | Kaschin-Beck disease, right knee |
52 | 7A025E77-7832-4F53-B9A7-09A3F98AC17E | 4 | M12.162 | Kaschin-Beck disease, left knee |
53 | 81C5B13B-F6B2-4E57-9593-6E7E4C13B2CE | 4 | M12.162 | Kaschin-Beck disease, left knee |
54 | B39DC5AC-E003-4E6A-91B6-FC07625A1285 | 3 | M1A.352 | Chronic gout due to renal impairment, left hip |
55 | A7142B71-A144-4D56-BD14-3E966B01DB37 | 1 | M24.22 | Disorder of ligament, elbow |
56 | 36775002-9EC3-4889-AD4F-80DC6855C8D8 | 2 | M24.242 | Disorder of ligament, left hand |
57 | A0A976C8-9B30-4492-B8C4-5B25095B9192 | 1 | M24.251 | Disorder of ligament, right hip |
58 | 36775002-9EC3-4889-AD4F-80DC6855C8D8 | 5 | M24.272 | Disorder of ligament, left ankle |
59 | 6985D824-3269-4D12-A9DD-B932D640E26E | 2 | M26.6 | Temporomandibular joint disorders |
60 | 6D5DCAC1-17FE-4D7C-923B-806EFBA3E6DF | 3 | M49.84 | Spondylopathy in diseases classified elsewhere, thoracic region |
61 | 135C831F-7DA5-46C0-959C-EBCBD8810B43 | 2 | M49.87 | Spondylopathy in diseases classified elsewhere, lumbosacral region |
62 | 6A57AC0C-57F3-4C19-98A1-51135EFBC4FF | 3 | M51 | Thoracic, thoracolumbar, and lumbosacral intervertebral disc disorders |
63 | 220C8D43-1322-4A9D-B890-D426942A3649 | 1 | M63 | Disorders of muscle in diseases classified elsewhere |
64 | 25B786AF-0F99-478C-9CFA-0EA607E45834 | 2 | M63.831 | Disorders of muscle in diseases classified elsewhere, right forearm |
65 | 4C201C71-CCED-40D1-9642-F9C8C485B854 | 1 | M63.832 | Disorders of muscle in diseases classified elsewhere, left forearm |
66 | CC9CDA72-B37A-4F8F-AFE4-B08F56A183BE | 2 | M63.851 | Disorders of muscle in diseases classified elsewhere, right thigh |
67 | 220C8D43-1322-4A9D-B890-D426942A3649 | 2 | M72 | Fibroblastic disorders |
68 | 2A5251B1-0945-47FA-A65C-7A6381562591 | 4 | M84 | Disorder of continuity of bone |
69 | 0E0EADE8-5592-4E0B-9F88-D7596E32EE08 | 3 | M84.51 | Pathological fracture in neoplastic disease, shoulder |
70 | E5478913-6819-4977-BB11-4C8B61175B56 | 2 | M84.552 | Pathological fracture in neoplastic disease, left femur |
71 | A0A976C8-9B30-4492-B8C4-5B25095B9192 | 4 | M90 | Osteopathies in diseases classified elsewhere |
72 | 6D5DCAC1-17FE-4D7C-923B-806EFBA3E6DF | 1 | M90.51 | Osteonecrosis in diseases classified elsewhere, shoulder |
73 | 967987B9-FFEF-4776-85CF-AE05CA81F583 | 4 | M90.511 | Osteonecrosis in diseases classified elsewhere, right shoulder |
74 | 8AF47463-8534-4203-B210-C2290F6CE689 | 2 | M90.522 | Osteonecrosis in diseases classified elsewhere, left upper arm |
75 | 1A40AF35-C6D4-4D46-B475-A15D84E8A9D5 | 5 | M90.53 | Osteonecrosis in diseases classified elsewhere, forearm |
76 | 9E18822E-7D13-45C7-B50E-F95CFF92BC3E | 2 | M90.6 | Osteitis deformans in neoplastic diseases |
77 | 8856096E-E59C-4156-A767-C091AF799C80 | 1 | M90.6 | Osteitis deformans in neoplastic diseases |
78 | 135C831F-7DA5-46C0-959C-EBCBD8810B43 | 4 | M90.632 | Osteitis deformans in neoplastic diseases, left forearm |
79 | 21792512-2D40-4326-BEA2-A40127EB24FF | 3 | M90.642 | Osteitis deformans in neoplastic diseases, left hand |
80 | C60FE675-CA52-4C55-A233-F4B27E94987F | 3 | M90.86 | Osteopathy in diseases classified elsewhere, lower leg |
SELECT *
FROM AdmissionsDiagnosesCorePopulatedTable
WHERE PrimaryDiagnosisCode LIKE '%4'
ORDER BY PrimaryDiagnosisCode
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM AdmissionsDiagnosesCorePopulatedTable
WHERE PrimaryDiagnosisCode LIKE '%4'
ORDER BY PrimaryDiagnosisCode
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | AdmissionID | PrimaryDiagnosisCode | PrimaryDiagnosisDescription | |
---|---|---|---|---|
0 | 868E700E-3C56-458F-A477-078D671DCB20 | 2 | B33.4 | Hantavirus (cardio)-pulmonary syndrome [HPS] [HCPS] |
1 | 66154E24-D3EE-4311-89DB-6195278F9B3C | 4 | B97.34 | Human T-cell lymphotrophic virus, type II [HTLV-II] as the cause of diseases classified elsewhere |
2 | DA6CECFF-DE13-4C4C-919F-64E1A2B76C9D | 3 | C71.4 | Malignant neoplasm of occipital lobe |
3 | 6E70D84D-C75F-477C-BC37-9177C3698C66 | 2 | D13.4 | Benign neoplasm of liver |
4 | 79A7BA2A-D35A-4CB8-A835-6BAA13B0058C | 3 | D14 | Benign neoplasm of middle ear and respiratory system |
5 | 6D8008ED-D623-4BE4-B93B-335F9797C170 | 3 | D41.4 | Neoplasm of uncertain behavior of bladder |
6 | 35FE7491-1A1D-48CB-810C-8DC2599AB3DD | 2 | D48.4 | Neoplasm of uncertain behavior of peritoneum |
7 | 25B786AF-0F99-478C-9CFA-0EA607E45834 | 5 | E08.64 | Diabetes mellitus due to underlying condition with hypoglycemia |
8 | 016A590E-D093-4667-A5DA-D68EA6987D93 | 2 | E11.64 | Type 2 diabetes mellitus with hypoglycemia |
9 | EA9B67E2-15F0-450B-A8A6-14F6E4AE3D12 | 1 | E72.4 | Disorders of ornithine metabolism |
10 | CC12B481-B516-455B-884F-4CA900B29F2E | 2 | E87.4 | Mixed disorder of acid-base balance |
11 | 0A9BA3E4-CF3C-49C4-9774-5EEA2EE7D123 | 1 | F31.4 | Bipolar disorder, current episode depressed, severe, without psychotic features |
12 | 64182B95-EB72-4E2B-BE77-8050B71498CE | 2 | F45.4 | Pain disorders related to psychological factors |
13 | 80D356B4-F974-441F-A5F2-F95986D119A2 | 1 | H34 | Retinal vascular occlusions |
14 | 81C5B13B-F6B2-4E57-9593-6E7E4C13B2CE | 1 | I25.84 | Coronary atherosclerosis due to calcified coronary lesion |
15 | 220C8D43-1322-4A9D-B890-D426942A3649 | 3 | J14 | Pneumonia due to Hemophilus influenzae |
16 | 80D356B4-F974-441F-A5F2-F95986D119A2 | 2 | K50.014 | Crohn's disease of small intestine with abscess |
17 | FA157FA5-F488-4884-BF87-E144630D595C | 2 | M06.34 | Rheumatoid nodule, hand |
18 | 6D5DCAC1-17FE-4D7C-923B-806EFBA3E6DF | 3 | M49.84 | Spondylopathy in diseases classified elsewhere, thoracic region |
19 | 2A5251B1-0945-47FA-A65C-7A6381562591 | 4 | M84 | Disorder of continuity of bone |
20 | F0B53A2C-98CA-415D-B928-E3FD0E52B22A | 3 | N18.4 | Chronic kidney disease, stage 4 (severe) |
21 | 53B9FFDD-F80B-43BE-93CF-C34A023EE7E9 | 2 | Q60.4 | Renal hypoplasia, bilateral |
22 | 3B11D6B3-A36A-4B69-A437-C29BF425A941 | 2 | T82.4 | Mechanical complication of vascular dialysis catheter |
SELECT *
FROM AdmissionsDiagnosesCorePopulatedTable
WHERE PrimaryDiagnosisCode LIKE '%5.%'
ORDER BY PrimaryDiagnosisCode
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('100_patients.db')
sql_statement = """
SELECT *
FROM AdmissionsDiagnosesCorePopulatedTable
WHERE PrimaryDiagnosisCode LIKE '%5.%'
ORDER BY PrimaryDiagnosisCode
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
PatientID | AdmissionID | PrimaryDiagnosisCode | PrimaryDiagnosisDescription | |
---|---|---|---|---|
0 | 967987B9-FFEF-4776-85CF-AE05CA81F583 | 2 | B95.1 | Streptococcus, group B, as the cause of diseases classified elsewhere |
1 | DDC0BC57-7A4E-4E02-9282-177750B74FBC | 2 | B95.62 | Methicillin resistant Staphylococcus aureus infection as the cause of diseases classified elsewhere |
2 | DDC0BC57-7A4E-4E02-9282-177750B74FBC | 3 | C05.1 | Malignant neoplasm of soft palate |
3 | 1A8791E3-A61C-455A-8DEE-763EB90C9B2C | 3 | C15.8 | Malignant neoplasm of overlapping sites of esophagus |
4 | 0BC491C5-5A45-4067-BD11-A78BEA00D3BE | 1 | C75.1 | Malignant neoplasm of pituitary gland |
5 | FE0B9B59-1927-45B7-8556-E079DC1DE30A | 3 | C75.3 | Malignant neoplasm of pineal gland |
6 | 69B5D2A0-12FD-46EF-A5FF-B29C4BAFBE49 | 3 | D15.0 | Benign neoplasm of thymus |
7 | C65A4ADE-112E-49E4-B72A-0DED22C242ED | 3 | D35.2 | Benign neoplasm of pituitary gland |
8 | 7FD13988-E58A-4A5C-8680-89AC200950FA | 1 | D35.5 | Benign neoplasm of carotid body |
9 | 8AF47463-8534-4203-B210-C2290F6CE689 | 5 | D55.2 | Anemia due to disorders of glycolytic enzymes |
10 | 7548B6CF-79D9-461D-A0C5-20B861406FAC | 2 | E75.01 | Sandhoff disease |
11 | 0BC491C5-5A45-4067-BD11-A78BEA00D3BE | 2 | F25.0 | Schizoaffective disorder, bipolar type |
12 | 64182B95-EB72-4E2B-BE77-8050B71498CE | 2 | F45.4 | Pain disorders related to psychological factors |
13 | A19A0B00-4C9A-4206-B1FE-17E6DA3CEB0B | 2 | F45.41 | Pain disorder exclusively related to psychological factors |
14 | 2A5251B1-0945-47FA-A65C-7A6381562591 | 6 | F95.1 | Chronic motor or vocal tic disorder |
15 | DB92CDC6-FA9B-4492-BC2C-0C588AD78956 | 1 | H75.01 | Mastoiditis in infectious and parasitic diseases classified elsewhere, right ear |
16 | B2EB15FA-5431-4804-9309-4215BDC778C0 | 2 | H75.03 | Mastoiditis in infectious and parasitic diseases classified elsewhere, bilateral |
17 | C54B5AAD-98E8-472D-BAA0-638D9F3BD024 | 2 | I15.2 | Hypertension secondary to endocrine disorders |
18 | 135C831F-7DA5-46C0-959C-EBCBD8810B43 | 3 | I25.10 | Atherosclerotic heart disease of native coronary artery without angina pectoris |
19 | CC9CDA72-B37A-4F8F-AFE4-B08F56A183BE | 1 | I25.110 | Atherosclerotic heart disease of native coronary artery with unstable angina pectoris |
20 | 53B9FFDD-F80B-43BE-93CF-C34A023EE7E9 | 4 | I25.711 | Atherosclerosis of autologous vein coronary artery bypass graft(s) with angina pectoris with documented spasm |
21 | 69B5D2A0-12FD-46EF-A5FF-B29C4BAFBE49 | 5 | I25.75 | Atherosclerosis of native coronary artery of transplanted heart with angina pectoris |
22 | 016A590E-D093-4667-A5DA-D68EA6987D93 | 3 | I25.812 | Atherosclerosis of bypass graft of coronary artery of transplanted heart without angina pectoris |
23 | 6985D824-3269-4D12-A9DD-B932D640E26E | 1 | I25.82 | Chronic total occlusion of coronary artery |
24 | 81C5B13B-F6B2-4E57-9593-6E7E4C13B2CE | 1 | I25.84 | Coronary atherosclerosis due to calcified coronary lesion |
25 | 2A8772FE-61DB-483E-B6BF-6C0A74BA9C2A | 2 | M05.13 | Rheumatoid lung disease with rheumatoid arthritis of wrist |
26 | A7142B71-A144-4D56-BD14-3E966B01DB37 | 3 | M05.132 | Rheumatoid lung disease with rheumatoid arthritis of left wrist |
27 | 135C831F-7DA5-46C0-959C-EBCBD8810B43 | 5 | M05.17 | Rheumatoid lung disease with rheumatoid arthritis of ankle and foot |
28 | 2A5251B1-0945-47FA-A65C-7A6381562591 | 3 | M05.23 | Rheumatoid vasculitis with rheumatoid arthritis of wrist |
29 | EEAFC0B3-B835-4D99-AB33-2F9428E54E5F | 1 | M05.25 | Rheumatoid vasculitis with rheumatoid arthritis of hip |
30 | E483DE6E-D4E6-47FD-905B-22EE86EC7ACE | 3 | M05.252 | Rheumatoid vasculitis with rheumatoid arthritis of left hip |
31 | 7548B6CF-79D9-461D-A0C5-20B861406FAC | 1 | M05.261 | Rheumatoid vasculitis with rheumatoid arthritis of right knee |
32 | C65A4ADE-112E-49E4-B72A-0DED22C242ED | 1 | M05.27 | Rheumatoid vasculitis with rheumatoid arthritis of ankle and foot |
33 | FB2ABB23-C9D0-4D09-8464-49BF0B982F0F | 1 | M05.272 | Rheumatoid vasculitis with rheumatoid arthritis of left ankle and foot |
34 | B39DC5AC-E003-4E6A-91B6-FC07625A1285 | 5 | M05.441 | Rheumatoid myopathy with rheumatoid arthritis of right hand |
35 | 7A025E77-7832-4F53-B9A7-09A3F98AC17E | 1 | M05.442 | Rheumatoid myopathy with rheumatoid arthritis of left hand |
36 | 0E0EADE8-5592-4E0B-9F88-D7596E32EE08 | 2 | M05.49 | Rheumatoid myopathy with rheumatoid arthritis of multiple sites |
37 | 69B5D2A0-12FD-46EF-A5FF-B29C4BAFBE49 | 2 | M05.5 | Rheumatoid polyneuropathy with rheumatoid arthritis |
38 | 80AC01B2-BD55-4BE0-A59A-4024104CF4E9 | 5 | M05.51 | Rheumatoid polyneuropathy with rheumatoid arthritis of shoulder |
39 | 7548B6CF-79D9-461D-A0C5-20B861406FAC | 3 | M05.511 | Rheumatoid polyneuropathy with rheumatoid arthritis of right shoulder |
40 | 80D356B4-F974-441F-A5F2-F95986D119A2 | 6 | M05.561 | Rheumatoid polyneuropathy with rheumatoid arthritis of right knee |
41 | EEAFC0B3-B835-4D99-AB33-2F9428E54E5F | 2 | M05.59 | Rheumatoid polyneuropathy with rheumatoid arthritis of multiple sites |
42 | B2EB15FA-5431-4804-9309-4215BDC778C0 | 1 | M05.722 | Rheumatoid arthritis with rheumatoid factor of left elbow without organ or systems involvement |
43 | FA157FA5-F488-4884-BF87-E144630D595C | 1 | M05.732 | Rheumatoid arthritis with rheumatoid factor of left wrist without organ or systems involvement |
44 | 35FE7491-1A1D-48CB-810C-8DC2599AB3DD | 3 | M05.741 | Rheumatoid arthritis with rheumatoid factor of right hand without organ or systems involvement |
45 | 967987B9-FFEF-4776-85CF-AE05CA81F583 | 1 | M05.742 | Rheumatoid arthritis with rheumatoid factor of left hand without organ or systems involvement |
46 | 25B786AF-0F99-478C-9CFA-0EA607E45834 | 4 | M05.75 | Rheumatoid arthritis with rheumatoid factor of hip without organ or systems involvement |
47 | 886B5885-1EE2-49F3-98D5-A2F02EB8A9D4 | 1 | M05.752 | Rheumatoid arthritis with rheumatoid factor of left hip without organ or systems involvement |
48 | C5D09468-574F-4802-B56F-DB38F4EB1687 | 1 | N25.1 | Nephrogenic diabetes insipidus |
49 | 65A7FBE0-EA9F-49E9-9824-D8F3AD98DAC0 | 2 | S35.415 | Laceration of left renal vein |
50 | C8556CC0-32FC-4CA5-A8CD-9CCF38816167 | 2 | Z95.810 | Presence of automatic (implantable) cardiac defibrillator |
13.3.11. Checking for NULL#
SELECT *
FROM Cars
WHERE color_id IS NULL
Show code cell source
import sqlite3
import pandas as pd
conn = sqlite3.connect('cars.db')
sql_statement = """
SELECT *
FROM Cars
WHERE color_id IS NULL
"""
df = pd.read_sql_query(sql_statement, conn)
df.style.set_table_attributes('style="font-size: 12px"')
car_id | make_model_id | color_id | available |
---|